5,417 research outputs found

    Electron-phonon interaction in Strongly Correlated Systems

    Get PDF
    The Hubbard-Holstein model is a simple model including both electron-phonon interaction and electron-electron correlations. We review a body of theoretical work investigating the effects of strong correlations on the electron-phonon interaction. We focus on the regime, relevant to high-T_c superconductors, in which the electron correlations are dominant. We find that the electron-phonon interaction can still have important signatures, even if many anomalies appear, and the overall effect is far from conventional. In particular in the paramagnetic phase the effects of phonons are much reduced in the low-energy properties, while the high-energy physics can be strongly affected by phonons. Moreover, the electron-phonon interaction can still give rise to important effects, like phase separation and charge-ordering, and it assumes a predominance of forward scattering even if the bare interaction is assumed to be local (momentum independent). Antiferromagnetic correlations reduce the screening effects due to electron-electron interactions and revive the electron-phonon effects.Comment: 15 pages, 12 figure

    First-Order Pairing Transition and Single-Particle Spectral Function in the Attractive Hubbard Model

    Full text link
    A Dynamical Mean Field Theory analysis of the attractive Hubbard model is carried out. We focus on the normal state upon restricting to solutions where superconducting order is not allowed. Nevertheless a clear first-order pairing transition as a function of the coupling takes place at all the electron densities out of half-filling. The transition occurs between a Fermi liquid, stable for UUcU U_c. The spectral function in the Fermi liquid phase is constituted by a low energy structure around the Fermi level (similar to the Kondo resonance of the repulsive half-filled model), which disappears discontinuously at U=UcU=U_c, and two high energy features (lower and upper Hubbard bands), which persist in the insulating phase.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    On localization effects in underdoped cuprates

    Full text link
    We comment on transport experiments in underdoped LaSrCuO in the non-superconducting phase. The temperature dependence of the resistance strongly resembles what is expected from standard localization theory. However this theory fails, when comparing with experiments in more detail.Comment: 8 pages, to be published in J. of Superconductivit

    R-Matrix Formulation of the Quantum Inhomogeneous Groups Iso_qr(N) and Isp_qr(N)

    Full text link
    The quantum commutations RTT=TTRRTT=TTR and the orthogonal (symplectic) conditions for the inhomogeneous multiparametric qq-groups of the Bn,Cn,DnB_n,C_n,D_n type are found in terms of the RR-matrix of Bn+1,Cn+1,Dn+1B_{n+1},C_{n+1},D_{n+1}. A consistent Hopf structure on these inhomogeneous qq-groups is constructed by means of a projection from Bn+1,Cn+1,Dn+1B_{n+1},C_{n+1},D_{n+1}. Real forms are discussed: in particular we obtain the qq-groups ISOq,r(n+1,n1)ISO_{q,r}(n+1,n-1), including the quantum Poincar\'e group.Comment: 14 pages, latex, no figure

    Electron-phonon Interaction close to a Mott transition

    Full text link
    The effect of Holstein electron-phonon interaction on a Hubbard model close to a Mott-Hubbard transition at half-filling is investigated by means of Dynamical Mean-Field Theory. We observe a reduction of the effective mass that we interpret in terms of a reduced effective repulsion. When the repulsion is rescaled to take into account this effect, the quasiparticle low-energy features are unaffected by the electron-phonon interaction. Phonon features are only observed within the high-energy Hubbard bands. The lack of electron-phonon fingerprints in the quasiparticle physics can be explained interpreting the quasiparticle motion in terms of rare fast processes.Comment: 4 pages, 3 color figures. Slightly revised text and references. Kondo effect result added in Fig. 2 for comparison with DMFT dat

    Stellar Evolutionary Models for Magellanic Clouds

    Full text link
    We supplement current evolutionary computations concerning Magellanic Cloud stars by exploring the evolutionary behavior of canonical stellar models (i.e.,with inefficient core overshooting) with metallicities suitable for stars in the Clouds. After discussing the adequacy of the adopted evolutionary scenario, we present evolutionary sequences as computed following a selected sample of stellar models in the mass range 0.8-8 Mo from the Main Sequence till the C ignition or the onset of thermal pulses in the advanced Asymptotic Giant Branch phase. On this basis, cluster isochrones covering the range of ages from 100 Myr to 15 Gyr are presented and discussed. To allow a comparison with evolutionary investigations appeared in the recent literature, we computed additional sets of models which take into account moderate core overshooting during the H burning phase, discussing the comparison in terms of current uncertainties in the stellar evolutionary models. Selected predictions constraining the cluster ages are finally discussed, presenting a calibration of the difference in magnitude between the luminous MS termination and the He burning giants in terms of cluster age. Both evolutionary tracks and isochrones have been made available at the node http://gipsy.cjb.net as a first step of a planned ``Pisa Evolutionary Library''.Comment: 11 pages, 9 eps figures, A&A accepted, evolutionary tracks and isochrones available at http://gipsy.cjb.net at the link ``Pisa Evolutionary Library'

    Theoretical Zero Age Main Sequences revisited

    Full text link
    Zero Age Main Sequence (ZAMS) models with updated physical inputs are presented for selected assumptions about the chemical composition, covering the ranges 0.6 < M/Mo < 1.2, 0.0001 < Z < 0.04, 0.23 < Y < 0.34.The HR diagram location of the ZAMS as a function of Y and Z is discussed both in the theoretical and in the observational HR diagrams, showing that the V magnitude presents an increased dependence on Z to be taken into account when discussing observational evidences. Analytical relations quantifying both these dependences are derived. Implications for the galactic helium to heavier elements enrichment are finally discussed.Comment: 4 pages, 4 postscript figures, accepted for publication on Astronomy & Astrophysic
    corecore